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I Introduced by Koopmans and Beckmann in 1957

I Cited by ≈ 1500

I Among the hardest combinatorial problems

I Real and test instances easily accessible (QAPLib - A quadratic
assignment problem library)

I Instances of size N = 30 are still unsolved
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I Optimal assignment of factories to the cities marked in green
I Distances between the cities and flows between the factories

shown below

A=


0 3 6 4 2
3 0 2 3 3
6 2 0 3 4
4 3 3 0 1
2 3 4 1 0

 B=


0 10 15 0 7

10 0 5 6 0
15 5 0 4 2
0 6 4 0 5
7 0 2 5 0
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I Optimal solution = 258
I Optimal permutation=[2 4 5 3 1]

A=


0 3 6 4 2
3 0 2 3 3
6 2 0 3 4
4 3 3 0 1
2 3 4 1 0

 B24531 =


0 6 0 5 10
6 0 5 4 0
0 5 0 2 7
5 4 2 0 15

10 0 7 15 0
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I Hospital Layout - German
university hospital, Klinikum
Regensburg, built 1972

I Optimality proven in the year
2000

I [Krarup and Pruzan(1978)]
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I Airport gate assignment

I Minimize total passenger
movement

I Minimize total baggage
movement

I [Haghani and Chen(1998)]
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I Steinberg wiring problem
I [Steinberg(1961)]
I component placing on circuit boards
I [Rabak and Sichman(2003)]
I Minimizing the number of transistors needed on integrated

circuits
I Burkard et al.(1993)
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I Optimal placing of letters on
keyboards

I Language specific

I Burkard and
Offermann(1977)

I Optimal placing of letters on
touchscreen devices

I Only one or two fingers used

I Dell’Amico et al.(2009)
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I Turbine runner in electricity
generation

I The weight of the blades can
differ up to ±5%

I Objective: To balance the
turbine runner

I [Laporte and Mercure(1988)]
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I Seating order at tonight’s
dinner
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I Microarrays can have up to 1.3 million probes

I Small subregions can be solved as QAPs

I Objective: To reduce the risk of unintended illumination of
probes

AGTCGCACGCGTAGA

ATTTGGAGCCGTCGA

TGTTGATGCGGAGGC

CGTCGCCTCCGAGGT

ACTCGAGGAAGATGT

Sub-region (size N = 25)
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I Bandwith minimization of a graph

I Image processing

I Economics

I Molecular conformations in chemistry

I Scheduling

I Supply Chains

I Manufacturing lines

In addition to all the above, many well known problems in
combinatorial optimization can be written as QAPs, e.g.

I Traveling salesman problem

I Maximum cut problem
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Three Objective Functions

I Koopmanns-Beckmann

minA ·XBXT (1)

I SDP
mintr(AXBXT ) (2)

I DLR
minXA ·BX (3)
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Koopmans Beckmann form

N¼
i=1

N¼
j=1

N¼
k=1

N¼
l=1

aijbkl · xikxjl

N¼
i=1

xij = 1, j = 1, ...,N ;

N¼
j=1

xij = 1, i = 1, ...,N ;

xij ∈ {0,1}, i , j = 1, ...,N ;

I This formulation has N2(N −1)2 bilinear terms.
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minXA ·BX

min
N¼
i=1

N¼
j=1

a ′ijb
′
ij

a ′ij =
n¼

k=1

akjxik ∀i , j

b ′ij =
n¼

k=1

bik xkj ∀i , j

A=


0 3 5 9 6
3 0 2 6 9
5 2 0 8 10
9 6 8 0 2
6 9 10 2 0

 B=


0 4 3 7 7
4 0 4 10 4

3 4 0 2 3
7 10 2 0 4
7 4 3 4 0
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minXA ·BX

min
N¼
i=1

N¼
j=1

a ′ijb
′
ij

a ′ij =
n¼

k=1

akjxik ∀i , j

b ′ij =
n¼

k=1

bik xkj ∀i , j

A=


0 3 5 9 6
3 0 2 6 9
5 2 0 8 10
9 6 8 0 2
6 9 10 2 0

 B=


0 4 3 7 7
4 0 4 10 4

3 4 0 2 3
7 10 2 0 4
7 4 3 4 0


a ′23 = 5x21 +2x22 +0x23 +8x24 +10x25

b ′23 = 4x13 +0x23 +4x33 +10x43 +4x53
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Discrete Linear Reformulation (DLR)

min
n¼

i=1

n¼
j=1

Mi¼
m=1

Bmi zmij

zmij ≤ Aj
¼

k∈Kmi

xkj m = 1, ...,Mi

Mi¼
m=1

zmij = a′ij


∀i , j

Example for one bilinear term a′23b
′
23

a′23 = 5x21 +2x22 +0x23 +8x24 +10x25

b ′23 = 4x13 +0x23 +4x33 +10x43 +4x53

x13 + x23 + x33 + x43 + x53 = 1

x21 + x22 + x23 + x24 + x25 = 1
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Discrete Linear Reformulation (DLR)

min
n¼

i=1

n¼
j=1

Mi¼
m=1

Bmi zmij

zmij ≤ Aj
¼

k∈Kmi

xkj m = 1, ...,Mi

Mi¼
m=1

zmij = a′ij
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Example for one bilinear term a′23b
′
23

a′23 = 5x21 +2x22 +0x23 +8x24 +10x25

b ′23 = 4x13 +0x23 +4x33 +10x43 +4x53

x13 + x23 + x33 + x43 + x53 = 1

x21 + x22 + x23 + x24 + x25 = 1

4z1
23 +10z2

23

z1
23 ≤ 10(x13 + x33 + x53)

z1
23 + z2

23 = a ′23

Axel Nyberg

Optimization and Systems Engineering at Åbo Akademi University



Formulations 16 | 20

0
5

10

0
5

10
0

50

100

0
5

10

0
5

10
0

50

100

Figure 1: Bilinear term a ′23b
′
23 discretized in b ′23 (to the left) and in a ′23 (to the right)

I The size of the MILP problem is dependent on the number of
unique elements per row.

I Tightness of the MILP problem is dependent on the differences
between the elements in each row.
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I The size of the model is dependent on the number of unique
elements per row.

I The tightness of the model is dependent on the differences
between the elements in each row.

I A can be modified to any matrix Ã, where ãij + ãji = aij +aji .

I By solving an LP a priori, we can decrease the model size,
tighten the formulation and improve the lower bound.

A=



0 1 2 2 3 4 4 5
1 0 1 1 2 3 3 4
2 1 0 2 1 2 2 3
2 1 2 0 1 2 2 3
3 2 1 1 0 1 1 2
4 3 2 2 1 0 2 3
4 3 2 2 1 2 0 1
5 4 3 3 2 3 1 0


Ã=



0 2 2 2 6 6 6 6
0 0 0 0 4 4 4 4
2 2 0 2 2 2 2 2
2 2 2 0 2 2 2 2
0 0 0 0 0 0 0 0
2 2 2 2 2 0 2 2
2 2 2 2 2 2 0 2
4 4 4 4 4 4 0 0


I Does not break the symmetries in the problem.
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I Does not break the symmetries in the problem.
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Instance Size opt old LB DLR Time(minutes)
esc32a 32 130 103 130 1964
esc32b 32 168 132 168 3500
esc32c 32 642 616 642 254
esc32d 32 200 191 200 10
esc64a 64 116 98 116 48

Table 1: Solution times for the instances esc32a, esc32b, esc32c, esc32d and esc64a

from the QAPLIB to optimality using Gurobi 4.1 with default settings.

I Instances presented in 1990 and solved 2010 with our models
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Thank you for listening!

Questions?
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